Bipartition of graphs based on the normalized cut and spectral methods, Part I: Minimum normalized cut
نویسندگان
چکیده
The main objective of this paper is to solve the problem of finding graphs on which the spectral clustering method and the normalized cut produce different partitions. To this end, we derive formulae for minimum normalized cut for graphs in some classes such as paths, cycles, complete graphs, double-trees, lollipop graphs LPn,m, roach type graphs Rn,k and weighted paths Pn,k.
منابع مشابه
Bipartition of graphs based on the normalized cut and spectral methods
In the first part of this paper, we survey results that are associated with three types of Laplacian matrices:difference, normalized, and signless. We derive eigenvalue and eigenvector formulaes for paths and cycles using circulant matrices and present an alternative proof for finding eigenvalues of the adjacency matrix of paths and cycles using Chebyshev polynomials. Even though each results i...
متن کاملEvaluating performance of image segmentation criteria and techniques
The image segmentation problem is to delineate, or segment, a salient feature in an image. As such, this is a bipartition problem with the goal of separating the foreground from the background. An NP-hard optimization problem, the Normalized Cut problem, is often used as a model for image segmentation. The common approach for solving the normalized cut problem is the spectral method which gener...
متن کاملAn Evolutionary Multi-objective Discretization based on Normalized Cut
Learning models and related results depend on the quality of the input data. If raw data is not properly cleaned and structured, the results are tending to be incorrect. Therefore, discretization as one of the preprocessing techniques plays an important role in learning processes. The most important challenge in the discretization process is to reduce the number of features’ values. This operat...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملAnalysis of MinCut , Average Cut , and Normalized Cut Measures ( Extended
Partitioning of a graph representation, defined over low-level image features based on Gestalt inspired relations, is an effective strategy for forming coherent perceptual groups in an image. The usual practice, mainly motivated by efficiency considerations, is to approximate the general K-way partitioning solution by recursive bi-partitioning, where at each step the graph is broken into two pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013